Measuring the tameness of almost convex groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the Tameness of Almost Convex Groups

A 1-combing for a finitely presented group consists of a continuous family of paths based at the identity and ending at points x in the 1-skeleton of the Cayley 2-complex associated to the presentation. We define two functions (radial and ball tameness functions) that measure how efficiently a 1-combing moves away from the identity. These functions are geometric in the sense that they are quasi...

متن کامل

Improving tameness for metabelian groups

We show that any finitely generated metabelian group can be embedded in a metabelian group of type F3. More generally, we prove that if n is a positive integer and Q is a finitely generated abelian group, then any finitely generated ZQ-module can be embedded in a module that is n-tame. Combining with standard facts, the F3 embedding theorem follows from this and a recent theorem of R. Bieri and...

متن کامل

Solvable Baumslag-solitar Groups Are Not Almost Convex

The arguments of Cannon, Floyd, Grayson and Thurston [CFGT] showing that solvegeometry groups are not almost convex apply to solvable Baumslag-Solitar groups.

متن کامل

Characterization of almost maximally almost-periodic groups

Let G be an abelian group. We prove that a group G admits a Hausdorff group topology τ such that the von Neumann radical n(G, τ) of (G, τ) is non-trivial and finite iff G has a non-trivial finite subgroup. If G is a topological group, then n(n(G)) 6= n(G) if and only if n(G) is not dually embedded. In particular, n(n(Z, τ)) = n(Z, τ) for any Hausdorff group topology τ on Z. We shall write our a...

متن کامل

OD-characterization of almost simple groups related to U3(11)

Let $L := U_3(11)$. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. In fact, we prove that $L$, $L:2$ and $L:3$ are OD-characterizable, and $L:S_3$ is $5$-fold OD-characterizable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2000

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-00-02717-3